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Abstract 

Reaction of H,Os,(CO),, with PhC=CBr produced a vinyltriosmium complex 
Os,(CO),,&Br)(CH=CHPh) (1) in high yield. Thermolysis of complex 1 in reflux- 
ing toluene produced a hydrido-vinylidene complex Os,(CO)&H)( p-Br)(C=CHPh) 
(2); the crystal structure and reactivity of complexes 1 and 2 have been studied. 
Crystal data for complex 1: space group P2,/c, a 14.049(6), b 10.035(4), c 15.933(6) 
A, p 93.06(4)“, Z = 4; R, 6.32%, R, 6.33%, GOF = 1.49. Crystal data for complex 
2: space group P,/n,a 14.047(4), b 10.439(3), c 15.636(4) A, p 114.28(3)“, Z = 4; 
R, 3.80%, R, 4.38%, GOF = 0.73. 

Halogen elements are routinely used in chemical technology to improve the 
activity, selectivity, and stability of metal catalysts [l]; however, their influence on 
the bonding and the reactivity of adsorbed hydrocarbons is poorly understood [2]. 
Recently, there seems to have been a growing research activity on this subject. 
Geoffroy and Morrison [3] have reported a halide-promoted insertion of carbon 
monoxide into the bridging methylene group in anionic triosmium clusters; Lin and 
coworkers [4] have reported a halogen induced cluster fragmentation of a carboxa- 
mide-substituted triosmium complex. Their investigations have underlined the pro- 
gress on the studies of the influence of the halogen elements. Similarly, to examine 
the effect of halogen on the coordinated hydrocarbon fragments, we have synthe- 
sized a triosmium complex containing both a bromo fragment and a vinyl sub- 
stituent, Os,(CO),&-Br)(CH=CHPh) (1). Here we report our studies on the 
reactivity and the structure of both complex 1 and its vinylidene derivative 
Os,(CO)&H)(~-Br)(C=CHPh) (2). 

Treatment of H,Os,(CO),, with 1.1 equivalent of freshly distilled PhC=CBr in 
toluene solution at 60°C for 10 min gives the vinyl complex 1 in about 75% yield. 
Complex 1 was separated by column chromatography and characterized by spectro- 
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Fig. 1. Molecular structure of complex 1. Important dimensions include: bond lengthes (A) OS(~) . . OS(~) 
3.277(2), OS(~)-OS(~) 2.925(2), OS(~)-OS(~) X865(2), OS(l)-Br 2.599(3), OS(~)-Br 2.624(3), OS(~)-C(1 1) 
2.36(2), OS(~)-C(l1) 2.12(2). OS(~)-C(12) 2.47(3), C(ll)-C(12) 1.42(3): bond angle ( o ) 
OS(~)-C(ll)-Os(2) 93.8(9), OS(~)--IS-Os(2) 77.7(l). 

scopic methods [5*] and single-crystal X-ray diffraction (6 *]. The ORTEP diagram 
together with important structural parameters of 1 are shown in Fig. 1. The 
molecule consists of an open triangle in which the non-bonded osmium atoms OS(~) 
and OS(~) are bridged by the bromo ligand (as a three-electron donor). while the 
third osmium atom is uniquely bonded to four terminal CO ligands. The vinyl group 
is u-bonded to the atom OS(~) and i-r-bonded to the atom OS(~); the phenyl 
substituent is located frum to the OS(~)-C(ll) bond, and the a-hydrogen is 
oriented syn to the unique Os(CO), unit [7]. Therefore, the gross molecular 
geometry and ligand conformations of complex 1 are complementary to those of the 
analogous hydridovinyl complexes Os,(CO),,,( /A-H)(CH=CHBu’ ) [8] and 
Os,(CO),,( p-H)(CH=CHEt) [9], and the sulfido-vinyl complex Os,(CO),,,(p- 
SPh)(CH=CH,) [lo]. 

Complex 1 also underwent facile intramolecular rearrangement in solution. Its 
13C NMR spectrum (100.4 MHz, CDzC12, 294 K) displays six OS--CO signals at 6 
181.2, 180.7, 177.8, 176.4, 174.9 and 167.5 with relative ratio 2/l/1/2/2/2, 
suggesting the presence of an extremely rapid 7~ + cr, CJ + 7~ exchange of the 
bridging vinyl ligand. The low temperature limiting spectrum was recorded while 

* Reference number with asterisk indicates a note in the list of references 
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Fig. 2. Molecular structure of complex 2. Important dimensions include: bond lengthes (A) OS(~) . . . OS(~) 
3.547(l), OS(~)-OS(~) 2.851(l), OS(~)-OS(~) 2.883(l), OS(~)-Br 2.630(2), OS(Z)-Br 2.593(2), OS(~)-C(10) 
2.27(l), OS(~)-C(10) 2.16(l), OS(~)-C(10) 2.05(2), OS(~)-C(11) 2.34(2), C(lo)-C(11) 1.37(2); bond angle 
(“) 0$3)-0$2)-C(5) 123.4(6X OS(~)-0$3)-C(7) 115.1(5), OS(~)-OS(~)-c(1) 90.7(4), OS(~)-OS(~)-c(3) 
93.0(5), OS(~)-C(lO)-OS(~) 106.6(5), OS(~)-C(lO)-OS(~) 86.5(6), OS(l)-Br-Os(2) 85.6(l). 

the temperature was being decreased to 168 K. At this temperature, ten relatively 
broad OS-CO signals were observed at 6 181.5, 180.3, 180.0, 177.9, 177.6, 177.3, 
177.5, 170.7, 168.3 and 165.6. With use of the coalescence temperature of the signals 
at 6 168.3 and 165.6, the activation free energy (AG*) for the dynamic process was 
calculated to be 8.3 kcal/mol. For comparison, its hydrido analogue exhibits an 
activation energy in the range 10.3-11.3 kcal/mol [ll]. 

In boiling toluene complex 1 loses a CO ligand and cleavage of the (Y C-H bond 
is induced, to give a vinylidene complex Os,(CO),(p-H)(p-Br)(C=CHPh) (2) [5 *] in 
65% yield. The structure of 2 has also been determined by X-ray diffraction [6 *]. As 
indicated in Fig. 2, the molecule consists of three osmium atoms rearranged in open 
triangular geometry; the open edge is bridged by a bromine atom. The a-carbon of 
the vinylidene fragment is bonded to all three osmium atoms where the P-carbon is 
within the bonding distance of the atom OS(~). Therefore, the bonding mode of the 
vinylidene ligand can be considered to be u-bonded to the atoms OS(~) and OS(~) 
and r-bonded to the third OS atom via an asymmetric q2 interaction [12”]. Finally, 
the bridging hydride was not located on the Fourier map but is assumed to be 
associated with the OS(~)-OS(~) edge, because the OS(~)-OS(~) bond (2.883 A) is 
longer than the OS(~)-OS(~) bond (2.851 A) and the respective equatorial carbonyl 
ligands, C(5)-O(5) and C(7)-O(7) are both tilted away from the OS-OS bond (angle 
OS(~)-OS(~)-C(5) 123.4(6)“, angle OS(~)-OS(~)-C(7) 115.1(5)“. 
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In solution. the ‘f-l NMR spectrum of 2 exhibits one set of olefinic and hydride 
proton signals at 6 9.11 and - 11.25 and another set at S 5.09 and - 11.85 with a 
relative intensity 5/l, suggesting the presence of two rapidly interconvertible 
isomers (2a/2b 5/l). We propose that the isomerization is attributable to hydride 
migration (Scheme 1 j but the 7 ,2-hydrogen migration from the vinylidene p-carbon 
to the a-carbon [13]. Consistent with our postulate, the 13C NMR spectrum of 2 
showed two signals at 6 184.8 (2a) and 203.4 (2b) assigned to the a-carbon of the 
vinylidene fragments and further confirmed by a t7C labeling experiment. Further- 
more. in the related hydrido vinylidene complex Os,(CO),( p-H),(C=CH, j. Lewis 
and Johnson have aIso demonstrated by isotopic substitution that the dynamic 
process is due to the hydride migration [14]. 

The vinyl complex 1 and vinyhdene complex 2 behave quite differently when 
they are thermolyzed under hydrogen. Hydrogenation of 1 in refluxing toluene led 
to elimination of the coordinated vinyl group and produced Os,(COj ,(,(p-H)( ,u-Br) 
(3) (30 min, 45%j as sole osmium cluster characterized. In contrast. reaction of 2 
with hydrogen in refluxing benzene removed the bridging bromo fragment. to give 
an alkylidyne complex H?Os~(CO)q(~L1-CCH2Ph) (4) (4 h, 4O%j [5*]. .4nalogous 
reactions have been reported for their hydrido analogues: Kaesz and coworkers and 
Deeming and coworkers have reported that hydrogenation of Os,(CO),,(,n- 
H)(CH=CH2) and H20s,(COj,(C=CH2) yields H,Os,(CO),,, and H,Os,(COj,- 
( p ,-CCH 3). respectively [ 151. 

In addition, complexes I and 2 react with an excess of diphenylacetylene to give 
an acetylide complex Os,(COj,(p-Br)(C=CPh) (5) [5*.16] as the only isolable 
triosmium cluster, except that the required reaction conditions for complex 1 
(llO”C, 1 h, 30%) are more rigorous than that for 2 (70’ C. 3 h, 41%). As the 
required reaction conditions for the dehydrogenation of the vinyl complex 1 are 
comparable to those of its decarbonylation reaction mentioned previously. we 
conclude that the active intermediate is the vinylidene complex 2. Therefore. the 
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sequence of dehydrogenation of the vinyl fragment can be understood as an 
activation of the a-hydrogen to produce the hydride plus the vinylidene, followed 
by removal of the hydride and the P-hydrogen to produce the final acetylide 
fragment. In accord with our conclusion, Lewis and Johnson have reported that the 
reaction of H,Os,(CO),, with excess terminal alkyne first produces a hydridovinyl 
complex Os,(CO),,(~-H)(CH=CHR), and then an acetylide complex Os,(CO)& 
H)(C=CR) [ 171 as the reaction proceeds. However, the pivotal role of the vinylidene 
complexes was not clearly established in their system. The experiments we have 
described here suggest that a mechanism involving the formation of not only the 
vinyl but also the vinylidene complexes seems to be the most plausible reason for 
their presence. 
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